Problem 2.1

Time-dependent force

A 5 -kg mass moves under the influence of a force $\mathbf{F}=\left(4 t^{2} \hat{\mathbf{i}}-3 t \hat{\mathbf{j}}\right) \mathrm{N}$, where t is the time in seconds ($1 \mathrm{~N}=1$ newton). It starts at rest from the origin at $t=0$. Find: (a) its velocity; (b) its position; and (c) $\mathbf{r} \times \mathbf{v}$, for any later time.

Solution

According to Newton's second law, if a force \mathbf{F} acts on a mass m, it will have an acceleration a.

$$
\mathbf{F}=m \mathbf{a}
$$

The acceleration vector is then

$$
\begin{aligned}
\mathbf{a}(t) & =\frac{1}{m} \mathbf{F} \\
& =\frac{1}{5}\left\langle 4 t^{2},-3 t, 0\right\rangle \frac{\mathrm{m}}{\mathrm{~s}^{2}} \\
& =\left\langle\frac{4}{5} t^{2},-\frac{3}{5} t, 0\right\rangle \frac{\mathrm{m}}{\mathrm{~s}^{2}} .
\end{aligned}
$$

The velocity vector is obtained by integrating the acceleration vector with respect to time.

$$
\begin{aligned}
\mathbf{v}(t) & =\int \mathbf{a}(t) d t \\
& =\left\langle\frac{4}{15} t^{3}+C_{1},-\frac{3}{10} t^{2}+C_{2}, C_{3}\right\rangle \frac{\mathrm{m}}{\mathrm{~s}}
\end{aligned}
$$

Because the mass starts from rest, the initial condition for the velocity is $\mathbf{v}(0)=\langle 0,0,0\rangle$, so $C_{1}=0, C_{2}=0$, and $C_{3}=0$.

$$
=\left\langle\frac{4}{15} t^{3},-\frac{3}{10} t^{2}, 0\right\rangle \frac{\mathrm{m}}{\mathrm{~s}}
$$

The position vector is obtained by integrating the velocity vector with respect to time.

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{v}(t) d t \\
& =\left\langle\frac{1}{15} t^{4}+C_{4},-\frac{1}{10} t^{3}+C_{5}, C_{6}\right\rangle \mathrm{m}
\end{aligned}
$$

Because the mass starts at the origin, the initial condition for the position is $\mathbf{r}(0)=\langle 0,0,0\rangle$, so $C_{4}=0, C_{5}=0$, and $C_{6}=0$.

$$
=\left\langle\frac{1}{15} t^{4},-\frac{1}{10} t^{3}, 0\right\rangle \mathrm{m}
$$

Therefore,

$$
\mathbf{r} \times \mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{1}{15} t^{4} & -\frac{1}{10} t^{3} & 0 \\
\frac{4}{15} t^{3} & -\frac{3}{10} t^{2} & 0
\end{array}\right|=\left(-\frac{3}{150} t^{6}+\frac{4}{150} t^{6}\right) \hat{\mathbf{z}}=\frac{t^{6}}{150} \hat{\mathbf{z}} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

